C#6: The nameof Operator

Before discussing the `nameof` operator in C#6, I want us to consider why `nameof` exists at all. So, let's head back ten years to the heady days of 2005.

Wayne's World Flashback

When version 2.0 of the .NET framework arrived, it transitioned the fledgling platform from a sketch of what might be to a fully-formed platform that could support ongoing and future desktop and web development. Since then, each release of the framework and its associated languages have added a variety of bells and whistles that simplify and enhance the way we develop. Among many of the concepts and types introduced by .NET 2.0 was `System.ComponentModel.INotifyPropertyChanged`, part of the enhanced data binding introduced to Windows Forms development. This interface turned out to be a workhorse and introduced many developers to a new problem; making sure the string that named a variable matched the name of an actual variable.

Now, you may well object to this claim since various versions of `ArgumentException` already demanded this of developers, but I think we both know that until our tooling got smarter (like FxCop and Resharper), many of us just did not fill that argument out if we could help it. After all, the stack trace would tell us where the crash happened, we could put something meaningful in the exception message, and keeping that variable name up-to-date after refactoring was a pain. With the advent of `INotifyPropertyChanged` the benefit of putting the variable name in a string started to outweigh the costs. Quickly, patterns emerged to try and simplify this, from dubiously performant uses of reflection to build-time code generation. As tools matured, we could get refactorings that took these strings into account and warnings that could shout at us if a variable was mentioned that didn't exist. Few of these were particularly elegant or entirely foolproof, and none were both1. In addition to `ArgumentException` and `INotifyPropertyChanged`, property names would be used for logging and debugging.

In the Name of Progress

There were calls for a new operator to accompany `typeof`; the new operator, `infoof`2 would provide the corresponding reflection information of a particular code construct (like `MethodInfo` or `PropertyInfo`), simplifying not just obtaining the name of something, but also any reflection operation involving that something. All this use and discussion of meta-information did not go unnoticed. Eric Lippert blogged about `infoof` and why it would be useful, why it was so difficult to implement, and indirectly foreshadowed where we would be today. However, amid the discusson, there was little action.

In 2012, .NET 4.5 brought us the `CallerMemberNameAttribute` type and its siblings, `CallerLineNumberAttribute` and `CallerFilePathAttribute`. These new attributes enabled developers to decorate method arguments, indicating that the appropriate piece of information was to be injected into that argument when the method was called. This fell short of an `infoof` operator, but it greatly simplified use of `INotifyPropertyChanged` (and `INotifyPropertyChanging`, introduced in .NET 3.5). Alas, argument exceptions, logging, debugging, and other uses of method, variable, and property names were left as they were, often leading to mismatched error messages, obscure data binding bugs, and other problems.

That changed in 2015 with the new releases of both .NET and C#, and the new `nameof` operator in C#6. The `nameof` operator is sublimely simple; in fact, its concept seems so obvious that it's a wonder it took so long to appear3. Using `nameof`, we can inject the names of variables, types, methods, events, and properties into all sorts of places at compile-time4, knowing that if we change the name, our refactoring tools can update all references with confidence. Not only that, but our intent is clear; we want the name of this thing to be here and not just some string that happens to look like the name of some thing. While the `nameof` operator does not replace `CallerMemberNameAttribute`, which so deftly simplified `INotifyPropertyChanged`5, it does simplify other scenarios like throwing `ArgumentException`, logging errors, and outputting debug information.

In Conclusion

When I first contemplated writing a whole blog entry dedicated to `nameof`, I thought it was too simple a feature to warrant such focus; now I have finished, I believe `nameof` to be entirely worthy of the attention. Along with the fantastic string interpolation in C#6, I believe `nameof` is one of the simplest and most useful additions to the C#6 language. Like many C# and .NET features we now take for granted, `nameof` is a beautifully simple concept that we will come to rely upon. I believe it will save us countless hours of fixing erroneous refactoring, arguing over coding style and code reviews, and head-scratching at spurious errors.

  1. IMHO []
  2. pronounced, "Info Of" []
  3. As is often the case in software development, we were all too busy discussing the most complex use-case we could think of rather than the one that really needed solving []
  4. unlike reflection-based solutions that do all the work at run-time []
  5. `nameof` does provide an alternative, more wordy alternative for that scenario []

C#6: Support for .NET Framework 2.0 to 4.5

A colleague of mine, Eric Charnesky, asked me if C#6 language features would work in .NET Framework versions other than 4.6. I was pretty confident that the features were almost all1 just syntactical seasoning, I thought I would find out.

The TL;DR is yes, C#6 features will work when compiled against .NET 2.0 and above, with a few caveats.

  1. Async/await requires additional classes to be defined since the Task Parallel Library, `IAwaitable` and other types were not part of .NET 2.0.
  2. The magic parts of string interpolation need some types to be defined (thanks to Thomas Levesque for catching this oversight).
  3. Extension methods need the declaration of `System.Runtime.CompilerServices.ExtensionAttribute` so that the compiler can mark static methods as extension methods.

Rather than just try .NET 4.5, I decided to go all the way back to .NET 2.0 and see if I could write and execute a console application that used all the following C#6 features:

The code I used is not really important, though I have included it at the end of this post if you want to see what I did. The only mild stumbling block was the lack of obvious extension method support in .NET 2.0. However, extension methods are a language-only feature; all that is needed to make it work is an attribute that the compiler can use to mark methods as extension methods. Since .NET 2.0 doesn't have this attribute, I added it myself.

Exclusions

You might have noticed that I did not verify a couple of things. First, I left out the use of `await` in `try`/`catch` blocks. This is because .NET 2.0 does not include the BCL classes that the compiler expects when generating the state machines that drive async code. You might be able to find a third-party implementation that would add support, but my brief3 search was fruitless. That said, this feature will definitely work in .NET 4.5 as it is an update to how the compiler builds the code.

Second, I did not intentionally test the improved overload resolution. The improvements mostly seem to relate to resolution involving overloads that take method groups and nullable types. Unfortunately, in .NET 2.0 there was were no `Func` delegate types nor nullable value types (UPDATE: Nullable types totally existed in .NET 2.0 and C#2; thanks to Thomas Levesque for pointing out my strange oversight here – I blame the water), making it difficult to craft an example that would demonstrate this improvement. However, overload resolution affects how the compiler selects which method to use for a particular call site. Once the compiler has made the selection, it is fixed within the compiled output and as such, the version of the .NET framework has no bearing on whether the resolution is correct4.

Did it work?

With the test code written, I compiled and ran it. A console window flickered and Visual Studio returned. The code had run but I had forgotten to put anything in there that would give me chance to read the output. So, I dropped a breakpoint in at the end, and then ran it under the debugger. As I had suspected it might, everything worked.

Testing under .NET 2.0 runtime on Windows XP
Testing under .NET 2.0 runtime on Windows XP

Then I realised I was still executing it on a machine that had .NET 4.6 and therefore the .NET 4 runtime; would it still work under the .NET 2 runtime? So, I cracked open5 a Windows XP virtual machine from modern.ie and ran it again. It didn't work, because Windows XP did not come with .NET 2.0 installed (it wasn't even included in any of the service packs), so I installed it and tried once more. As I had suspected it might, everything worked.

In conclusion

If you find yourself still working with old versions of the .NET framework or the .NET runtime, you can still use and benefit from most features of C#6. I hope my small effort here is helpful. If you have anything to add, please comment.

Here Lies The Example Code6

using System;
using System.Collections.Generic;
using static System.Math;

namespace System.Runtime.CompilerServices
{
    [AttributeUsage( AttributeTargets.Method )]
    public class ExtensionAttribute : Attribute
    {
    }
}

namespace CSharp6andNET2
{
    internal class Program
    {
        public delegate bool Filter( ArgumentException ex, string argName );

        public bool DoFilter( Filter test, ArgumentException ex, string argName )
        {
            return test( ex, argName );
        }

        private static void Main( string[] args )
        {
            Filter x = ( ArgumentException ex, string argName ) => ex.ParamName == argName;
            for ( int count = 0; count < 2; count++ )
            {
                try
                {
                    ExceptionFilterTest( count == 0 );
                }
                catch ( ArgumentException e ) when (x( e, "argumentName" ))
                {
                    Console.WriteLine( "Logged filtered exception" );

                    var test = new TestClass();
                    Console.WriteLine(
                        $"{nameof( test.Count )}: {test.Count}, {nameof( test.Count2 )}: {test.Count2}{nameof( test.Count3 )}: {test.Count3}, {nameof( test.Count4 )}: {test.Count4( 1 )}" );

                    var list = new List<int>
                    {
                        "9",
                        "25",
                        "36",
                        16,
                        4,
                        64
                    };

                    Console.WriteLine( "List" );
                    foreach ( var n in list )
                    {
                        Console.WriteLine( Sqrt( n ) );
                    }

                    var dictionary = new Dictionary<int, string>
                    {
                        [ 4 ] = "Test",
                        [ 2 ] = null,
                        [ 45 ] = null,
                        [ 34 ] = null,
                        [ 200 ] = null,
                        [ 16 ] = "Another test"
                    };

                    foreach ( var k in dictionary )
                    {
                        Console.WriteLine( $"{k.Key}: {k.Value?.Substring( 0, 3 )}" );
                    }
                }
                catch ( Exception )
                {
                    Console.WriteLine( "Logged exception" );
                }
            }
        }

        private static void ExceptionFilterTest( bool filterable )
        {
            if ( filterable ) throw new ArgumentException( "Exception", "argumentName" );

            throw new Exception( "Exception" );
        }
    }

    internal static class Extensions
    {
        public static void Add( this List<int> list, string value )
        {
            list.Add( Int32.Parse( value ) );
        }
    }

    internal class TestClass
    {
        public int Count { get; } = 6;
        public int Count2 { get; set; } = 6;
        public int Count3 => 6;
        public int Count4( int x ) => x + 6;
    }
}

 

  1. Async/await requires the TPL classes in the BCL, extension methods need the ExtensionAttribute, and exception filters require some runtime support []
  2. The Elvis's []
  3. very brief []
  4. I realise many of the C#6 features could be left untested for similar reasons since almost all are compiler changes that do not need framework support, but testing it rather than assuming it is kind of the point []
  5. Waited an hour for the IE XP virtual machine to download and then get it running []
  6. Demonstrable purposes only; if you take this into production, on your head be it []